
11C H A P T E R

File-System
Implementation

Practice Exercises

11.1 Consider a file currently consisting of 100 blocks. Assume that the
file control block (and the index block, in the case of indexed alloca-
tion) is already in memory. Calculate how many disk I/O operations
are required for contiguous, linked, and indexed (single-level) alloca-
tion strategies, if, for one block, the following conditions hold. In the
contiguous-allocation case, assume that there is no room to grow in the
beginning, but there is room to grow in the end. Assume that the block
information to be added is stored in memory.

a. The block is added at the beginning.

b. The block is added in the middle.

c. The block is added at the end.

d. The block is removed from the beginning.

e. The block is removed from the middle.

f. The block is removed from the end.

Answer:

Contiguous Linked Indexed
a. 201 1 1
b. 101 52 1
c. 1 3 1
d. 198 1 0
e. 98 52 0
f. 0 100 0

39



40 Chapter 11 File-System Implementation

11.2 What problems could occur if a system allowed a file system to be
mounted simultaneously at more than one location?
Answer: There would be multiple paths to the same file, which could
confuse users or encourage mistakes (deleting a file with one path
deletes the file in all the other paths).

11.3 Why must the bit map for file allocation be kept on mass storage, rather
than in main memory?
Answer: In case of system crash (memory failure) the free-space list
would not be lost as it would be if the bit map had been stored in main
memory.

11.4 Consider a system that supports the strategies of contiguous, linked,
and indexed allocation. What criteria should be used in deciding which
strategy is best utilized for a particular file?
Answer:

• Contiguous—if file is usually accessed sequentially, if file is
relatively small.

• Linked—if file is large and usually accessed sequentially.

• Indexed—if file is large and usually accessed randomly.

11.5 One problem with contiguous allocation is that the user must preallo-
cate enough space for each file. If the file grows to be larger than the
space allocated for it, special actions must be taken. One solution to
this problem is to define a file structure consisting of an initial con-
tiguous area (of a specified size). If this area is filled, the operating
system automatically defines an overflow area that is linked to the ini-
tial contiguous area. If the overflow area is filled, another overflow area
is allocated. Compare this implementation of a file with the standard
contiguous and linked implementations.
Answer: This method requires more overhead then the standard con-
tiguous allocation. It requires less overhead than the standard linked
allocation.

11.6 How do caches help improve performance? Why do systems not use
more or larger caches if they are so useful?
Answer: Caches allow components of differing speeds to communicate
more efficiently by storing data from the slower device, temporarily,
in a faster device (the cache). Caches are, almost by definition, more
expensive than the device they are caching for, so increasing the number
or size of caches would increase system cost.

11.7 Why is it advantageous for the user for an operating system to dynami-
cally allocate its internal tables? What are the penalties to the operating
system for doing so?
Answer: Dynamic tables allow more flexibility in system use growth —
tables are never exceeded, avoiding artificial use limits. Unfortunately,
kernel structures and code are more complicated, so there is more
potential for bugs. The use of one resource can take away more system
resources (by growing to accommodate the requests) than with static
tables.



Practice Exercises 41

11.8 Explain how the VFS layer allows an operating system easily to support
multiple types of file systems.
Answer: VFS introduces a layer of indirection in the file system imple-
mentation. In many ways, it is similar to object-oriented programming
techniques. System calls can be made generically (independent of file
system type). Each file system type provides its function calls and data
structures to the VFS layer. A system call is translated into the proper
specific functions for the target file system at the VFS layer. The calling
program has no file-system-specific code, and the upper levels of the
system call structures likewise are file system-independent. The trans-
lation at the VFS layer turns these generic calls into file-system-specific
operations.




